Researchers have achieved a breakthrough in the development of artificial intelligence by using light instead of electricity to perform computations.
The new approach significantly improves both the speed and efficiency of machine learning neural networks – a form of AI that aims to replicate the functions performed by a human brain in order to teach itself a task without supervision.
Current processors used for machine learning are limited in performing complex operations by the power required to process the data. The more intelligent the task, the more complex the data, and therefore the greater the power demands.
Download the new Independent Premium app
Sharing the full story, not just the headlines
Such networks are also limited by the slow transmission of electronic data between the processor and the memory.
Researchers from George Washington University in the US discovered that using photons within neural network (tensor) processing units (TPUs) could overcome these limitations and create more powerful and power-efficient AI.
A paper describing the research, published today in the scientific journal Applied Physics Reviews, reveals that their photon-based TPU was able to perform between 2-3 orders of magnitude higher than an electric TPU.
“We found that integrated photonic platforms that integrate efficient optical memory can obtain the same operations as a tensor processing unit, but they consume a fraction of the power and have higher throughput,” said Mario Miscuglio, one of the paper’s authors.
“When opportunely trained, [the platforms] can be used for performing interference at the speed of light.”
Potential commercial applications for the innovative processor include 5G and 6G networks, as well as data centres tasked with performing vast amounts of data processing.
Dr Miscuglio said: "Photonic specialised processors can save a tremendous amount of energy, improve response time and reduce data centre traffic."
This website or its third-party tools use cookies, which are necessary for analytics and its functioning and required to achieve the purposes illustrated in the cookie policy, including the personalization and analysis of ads and content. If you want to learn more or withdraw your consent to all or some of the cookies, please refer to the cookie policy.
By clicking on Accept you are agreeing to the placement of cookies on your device.
Further use of our site shall be considered as consent. You may view our Privacy Policy and Cookie Policy here for more information.
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Strictly Necessary Cookies
Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.